This article was downloaded by: [University of Haifa Library]

On: 16 August 2012, At: 09:03 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl19

Synthesis of Layered-Structure LiFeO₂

Mikio Shimode ^a , Makoto Sasaki ^b & Ken-Ichi Mukaida ^b

^a Division of Chemical and Material Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido, 050-8585, JAPAN

^b Department of Material Science and Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido, 050-8585, JAPAN

Version of record first published: 27 Oct 2006

To cite this article: Mikio Shimode, Makoto Sasaki & Ken-Ichi Mukaida (2000): Synthesis of Layered-Structure LiFeO₂, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 341:2, 183-188

To link to this article: http://dx.doi.org/10.1080/10587250008026137

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis of Layered-Structure LiFeO₂

MIKIO SHIMODE^a, MAKOTO SASAKI^b and KEN-ICHI MUKAIDA^b

^aDivision of Chemical and Material Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, Hokkaido 050–8585, JAPAN and ^bDepartment of Material Science and Engineering, Faculty of Engineering, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, Hokkaido 050–8585, JAPAN

(In final form June 23, 1999)

LiFeO₂, with a layered rocksalt structure of α -NaFeO₂-type was prepared by ion exchange reaction from Na⁺ ion to Li⁺ ion using α -NaFeO₂. α -NaFeO₂-type LiFeO₂ was synthesized by using the mixture of LiI and KI in the temperature range 220 to 480 °C. The heat treatment temperature of 600 °C gave α -LiFeO₂-type LiFeO₂ as a main product. As a result of Rietveld analysis, the structure of LiFeO₂ which assigned to α -NaFeO₂-type by an XRD measurement, was the mixture of α -NaFeO₂-type and Li-intercalated spinel-type structures.

Keywords: α-NaFeO₂-type oxide; LiFeO₂; Ion exchange reaction; Structure refinement

INTRODUCTION

The oxides having both chemical formula of ABO₂ (A, monovalent metal; B, trivalent metal) and containing Li⁺ ion in the "A" site, with a layered rocksalt α -NaFeO₂-type structure, have been studied on the property for cathode materials in Li⁺ ion secondary battery ^[1, 2]. LiCoO₂ ^[3] has been used for a practical application, because it has high charge and discharge voltage and excellent cycling characteristics. On the other hand, LiFeO₂ with α -NaFeO₂-type, can be expected to have a great advantage in comparison with LiCoO₂ for commercial use, because of the low cost of Fe.

Figure 1 shows the structure field map for the various ABO₂ containing Li⁺ ion and Na⁺ ion in the "A" site^[4, 5]. On the series with Li⁺ ion in the "A" site, oxides contain ions with smaller ionic radii than V³⁺ ion (ionic radius: 0.640 Å) in the "B" site adopt α -NaFeO₂-type and the compounds with larger ionic radii

than V³⁺ ion in the "B" site have α-LiFeO₂-type structure. Therefore, it seems that α-NaFeO₂-type LiFeO₂ is not prepared by a conventional solid state reaction⁽⁶⁾. Tabuchi et al.^[7] attempted to synthesize LiFeO₂ with α-NaFeO₂-type structure using various starting materials by solid state reaction. However, it was unsuc-

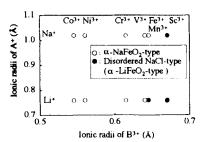


FIGURE 1 Structure field map for various ABO₂ compounds.

Structural data were taken from Refs. [4] and [5].

cessful. Nalbandyan and Shukaev^[8] prepared α -NaFeO₂-type LiFeO₂ from α -NaFeO₂ which is stable in α -NaFeO₂-type structure, by ion exchange reaction from Na⁺ ion to Li⁺ ion in molten LiNO₃. Fuchs and Kemmler-Sack^[9] prepared using the mixture of LiNO₃ and LiCl, and Shirane et al.^[10] employed the mixed salt of LiCl and KCl.

The present work has focused on the reaction condition for preparing α -NaFeO₂-type LiFeO₂ by using the mixture of LiI and KI.

EXPERIMENTAL

α-NaFeO₂ was prepared by solid state reaction. Na₂O (Wako Pure Chemical Ind., Ltd.; 85 %) and γ-Fe₂O₃ (Kojundo Chemical Lab. Co., Ltd.; 99%) were mixed in N₂ filled glove box (mixing ratio, Na: Fe= 55: 45 at%), and shaped by CIP method (pressure, 60 MPa; pressing time, 60 sec). Shaped specimens were heated at 600 °C for 30 h in O₂ (heating rate, 250 °C• h⁻¹; flowing rate, 200 SCCM). α-NaFeO₂ obtained was mixed with various Li-salts in a glove box. Reagents used for ion exchange reaction were LiNO₃ (Kishida Chemical Co., Ltd.; 98 %), LiCl (Kishida Chemical Co., Ltd.; 98 %), LiI (Kishida Chemical Co., Ltd.; 98 %). Ion exchange reaction was performed with LiNO₃, LiI, mixed salts of LiNO₃: LiCl= 88: 12 mol% and LiI: KI= 41: 59 mol%. To verify the effect of ion exchange from Na⁺ ion to Li⁺ ion, the mixing molar ratio was Na: Li= 1: 5. The mixed powder specimens were heated at 200-600 °C for 4 h in Ar (heating rate, 250 °C• h⁻¹; flowing rate,

200 SCCM). After heat treatment, the reaction products were washed with distilled water then dried.

The powder specimens obtained were evaluated by an XRD (Rigaku Denki, RV-200) with CuK α_1 radiation. Intensity data were collected from 5 to 80 deg in 2 θ at room temperature; scan speed, 4 deg• min⁻¹; scan step, 0.04 deg. The structure and the lattice parameters were refined by Rietveld analysis using the computer program RIETAN-97 beta.

RESULTS AND DISCUSSION

The reaction conditions and their products are summarized in Table I. As a result of using LiNO₃ in the ion exchange reaction, α -NaFeO₂ was included in the specimens in spite of heating at the temperature above its melting point (255 °C). When LiI was used in the ion exchange reaction, no ion exchange reaction occurred at the heat treatment temperature below melting point of LiI (446 °C). However the phase obtained at the heat treatment temperature above the melting point, was only a cation disordered rocksalt-type (α -LiFeO₂-type) LiFeO₂ with

TABLE I Reaction conditions and products.

Salts	Reaction conditions	Reaction products
LiNO ₃	300 °C, 4h	α-NaFeO2-type LiFeO2, α-NaFeO2
LiI	300 °C, 4h	α-NaFeO ₂ -type LiFeO ₂ , α-NaFeO ₂
	460°C, 4հ	α-LiFeO ₂ -type LiFeO ₂
LiNO ₃ /LiCl	200 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	300 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	340 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	380 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	460 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	500 °C, 4h	α-LiFeO ₂ -type LiFeO ₂
Lil/ KI	220 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	300 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	380 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	380 °C, 8h	α-NaFeO ₂ -type LiFeO ₂
	380 °C,12h	α -NaFeO ₂ -type LiFeO ₂ , α -LiFeO ₂ -type LiFeO ₂
	440 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	480 °C, 4h	α-NaFeO ₂ -type LiFeO ₂
	540 °C, 4h	α -NaFeO ₂ -type LiFeO ₂ , α -LiFeO ₂ -type LiFeO ₂
	600 °C, 4h	α-LiFeO ₂ -type LiFeO ₂

cubic and a space group of Fm3m. Therefore, the result shows the complete occurrence of the ion exchange reaction from Na⁺ ion to Li⁺ ion. When only one Lisalt is used as starting material, it is suggested that the Li-salt reactivity on α -NaFeO₂ is not so good, by the formation of single phase product of α -LiFeO₂-type LiFeO₂ instead of α -NaFeO₂-type structure.

As a result of mixed salt (LiNO₃: LiCl = 88: 12 mol%) used by Fuchs and Kemmler-Sack^[9], the sample synthesized at 200 °C under eutectic temperature of 260 °C, contained α -NaFeO₂-type LiFeO₂. The heating up to 460 °C resulted a main product of α -NaFeO₂-type LiFeO₂. However, higher temperature of 460 °C gave α -LiFeO₂-type LiFeO₂ as a main product. No diffraction peak of α -NaFeO₂ as starting material was observed in the products obtained by using the mixed salt of LiNO₃ and LiCl under any heat treatment conditions. Thus, it is indicated that the mixed salt has a role to promote ion exchange reaction from Na⁺ ion to Li⁺ ion.

Figure 2 shows the XRD patterns for the products prepared by the mixed salt of Lil and KI. The use of the mixed salt of Lil: KI with a composition of 41:

59 mol% (eutectic temperature of 260 °C) at a lower temperature of 220 °C than the melting point, resulted α-NaFeO₂-type LiFeO2 same as the use of the mixture of LiNO₃ and LiCl. α-NaFeO₂-type LiFeO₂ and α-LiFeO2-type LiFeO2 as main phase were prepared in the temperature 220-480 °C, above 480 °C, respectively. The crystallization of LiFeO2 was attempted at fixed heat treatment temperature of 380 °C with varying holding time, because of the lower diffraction intensities of the specimens. However, phase transformation from α-NaFeO₂-type to α-

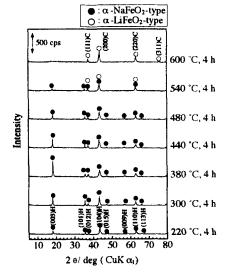


FIGURE 2 XRD patterns for LiFeO₂ obtained by ion exchange reaction using Lil/ KI at various temperatures.

(h k l) H as the hexagonal cell
(h k l) C as the cubic cell

LiFeO₂-type occurred without increasing the diffraction intensities. Therefore, these results indicate the difficulty of crystallization of α -NaFeO₂-type LiFeO₂ obtained by ion exchange from Na⁺ ion to Li⁺ ion in α -NaFeO₂.

The structure of LiFeO₂ synthesized by the mixed salt of LiI and KI was refined by Rietveld analysis. The Rietveld analysis performed on the specimen prepared at 380 °C for 4 h with the highest diffraction intensities, and used with α -NaFeO₂-type structure. For this analysis, all atom occupations were fixed in 1. The refinement results and the lattice parameters are listed in Table II. Judging from the results of S value in Table II, higher S value of 1.5136 was obtained in the α -NaFeO₂-type structure model. Thus, LiFeO₂ obtained in this work, can not be only α -NaFeO₂-type structure because of the higher S value than 1.3.

As shown in Figure 2, the diffraction peaks around 38, 43 and 63 in 2 θ (

Structure model	S	a (Å)	c (Å)
α-NaFeO ₂ -type (R-3m)	1.5136		
Two phases of α -NaFeO ₂ type (R-3m) and α -LiFeO ₂ type (Fm3m)	1.7215		
Two phases of α -NaFeO ₂ type (R-3m) and Li-intercalated spinel type (Fd-3m)	1.2789	2.958(8)	14.57(8)

TABLE II Rietveld refinement results for LiFeO2.

(S: goodness of fit between observed and calculated data)

deg) were assigned to (111), (200) and (220) for α -LiFeO₂-type LiFeO₂, respectively. Thus, the structure refinement was done with two-phase model of α -NaFeO₂-type and α -LiFeO₂-type structures. However, the result with two-phase model still showed a higher S value of 1.7215.

LiFeO₂ prepared by Fuchs and Kemmler-Sack^[9] and by Shirane et. al.^[10] has the mixed structure of α -NaFeO₂-type LiFeO₂ and Li-intercalated spinel-type Li₂Fe₂O₄. Then, Rietveld analysis was carried out by another two-phase model of α -NaFeO₂-type LiFeO₂ with a space group of R-3m and Li-intercalated spinel-type Li₂Fe₂O₄ with cubic and a space group of Fd-3m. As a result of S= 1.2789, it was better fit between observed and calculated data. The lattice parameters after Rietveld analysis, agree nearly with the values reported by Fuchs and Kemmler-Sack^[9] (a= 2.960(5) Å, c= 14.55(1) Å) and by Shirane et al. ^[10] (a= 2.9466(5) Å, c= 14.521(4) Å).

Table III gives the lattice parameters of LiFeO₂ prepared in this work compared with other ABO₂-type compounds with α-NaFeO₂ structure containing Li⁺ in the "A" site. The length of the a axis extends a little, whereas the c axis greatly increases with increasing ionic radii in the "B" site.

TABLE III Lattice parameters for various α -NaFeO₂-type compounds.

Compounds	a (Å)	с (Å)	References	
LiCoO ₂	2.805(2)	14.203(4)	[11]	
LiVO ₂	2.841(1)	14.751(1)	[11]	
LiNiO ₂	2.885(1)	14.203(4)	[11]	
LiCrO ₂	2.896(2)	14.34(3)	[11]	
LiFeO ₂	2.958(8)	14.57(8)	This work	

CONCLUSIONS

LiFeO₂ with α -NaFeO₂-type structure was prepared by ion exchange reaction from Na⁺ ion to Li⁺ ion in α -NaFeO₂. Application of the mixture of LiI and KI produced α -NaFeO₂-type LiFeO₂ as a main phase in the temperature range from 220 to 480 °C. α -LiFeO₂-type LiFeO₂ was obtained at 600 °C by this method. Rietveld refinement resulted that LiFeO₂ obtained was the mixed structures of α -NaFeO₂ type and Li-intercalated spinel type.

References

- M. Winter, J. O. Besenhard, M. E. Spahr and P. Novák, Adv. Mater., 10, No. 10, 725 (1998).
- [2] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mat. Res. Bull., 15, No. 6, 783 (1980).
- [3] K. Ozawa, Solid State Ionics, 69, 212 (1994).
- [4] R. D. Shannon and D. B. Rogers, Inorg. Chem., 10, 713 (1971).
- [5] C. Delmas, J. J. Braconnier, A. Maazaz and P. Hagenmuller, Rev. Chim. Minér., 19, 343 (1982).
- [6] J. C. Anderson and M. Schieber, J. Phys. Chem. Solids, 25, 961 (1964).
- [7] M. Tabuchi, K. Ado, H. Sakabe, C. Masquelier, H. Kageyama and O. Nakamura, Solid State Ionics, 79, 220 (1995).
- [8] V. B. Nalbandyan and I. L. Shukaev, Russ. J. Inorg. Chem. (Engl. Transl.), 32, 453 (1987).
- [9] B. Fuchs and S. Kemmler-Sack, Solid State Ionics, 68, 279 (1994).
- [10] T. Shirane, R. Kannno, Y. Kawamoto, Y. Takeda, M. Takano, T. Kamiyama and F. Izumi, Solid State Ionics, 79, 227 (1995).
- [11] T. A. Hewston and B. L. Chamberland, J. Phys. Chem. Solids, 48, No. 2, 97 (1987).